Monday, 23 January 2012


FISIKA RADIASI

Berdasarkan percobaan terhadap energi radiasi benda hitam, Max Planck membuat hipotesis:
"Radiasi hanya dipancarkan (atau diserap) dalam bentuk satuan-satuan/kuantum energi disebut foton yang besarnya berbanding lurus dengan frekuensi radiasi".

Energi total foton (masa foton = 0):
E = n . h . f = n . h . c/l
E = energi radiasi (joule)
h = konstanta Planck = 6.62 x 10-34 J.det
f = frekuensi radiasi (Hz)
l = panjang gelombang radiasi (m)
n = jumlah foton, jadi energi cahaya adalah terkuantisasi


Jadi dapat disimpulkan dari hipotesis Planck, bahwa cahaya adalah partikel sedangkan Maxwell menyatakan bahwa cahaya adalah gelombang, disebut dualisme cahaya.
 Efek foto listrik adalah peristiwa terlepasnya elektron dari permukaan suatu zat (logam), bila permukaan logam tersebut disinari cahaya (foton) yang memiliki energi lebih besar dari energi ambang (fungsi kerja) logam.
Efek fotolistrik ini ditemukan oleh Albert Einstein, yang menganggap bahwa cahaya (foton) yang mengenai logam bersifat sebagai partikel.

Energi kinetik foto elektron yang terlepas:

Ek = h f - h fo
Ek maks = e Vo
h f
= energi foton yang menyinari logam
h fo
= Fo frekuensi ambang = fungsi kerja

= energi minimum untuk melepas elektron
e
= muatan elektron = 1.6 x 10-19C
Vo
= potensial penghenti

Proses kebalikan foto listrik adalah proses pembentukan sinar X yaitu proses perubahan energi kinetik elektron yang bergerak menjadi gelombang elektromagnetik (disebut juga proses Bremmsstrahlung).

Kesimpulan:
  1. Agar elektron dapat lepas dari permukaan logam maka f > fo atau l < lo
  2. Ek maksimum elektron yang terlepas tidak tergantung pada intensitas cahaya yang digunakan, hanya tergantung pada energi atau frekuensi cahaya. Tetapi intensitas cahaya yang datang sebanding dengan jumlah elektron yang terlepas dari logam.

EFEK COMPTON
Konsep foton dikembangkan oleh Compton, yang menunjukkan bahwa foton memiliki momentum (p) yang besarnya:
p = E/c - h f/c = h/l
Hal ini menunjukkan bahwa foton dapat berkelakuan sebagai partikel (materi), dengan massa (m):
m = p/c karena m = E/c² = hf/c² = h/c l
Pada gejala Compton,foton (sinar X) yang menumbuk elektron atom suatu zat dihamburkan dengan panjang gelombang lebih besar.
Selisih panjang gelombang foton yang dihamburkan:
l' - l = h/moc (1 - cos q)

Gbr. Efek Compton

HIPOTESIS de BROGLIE
Louis de Broglie mengemukakan hipotesis:
"Cahaya selain memiliki sifat sebagai partikel, juga memiliki sifat sebagai gelombang".

Panjang gelombang de Broglie:

ldB = h/m v = h/p
h = konstanta Planck
m = massa partikel
v = kecepatan partikel


DUALISME CAHAYA

"Cahaya dapat bersifat sebagai gelombang dan dapat juga bersifat sebagai materi (partikel)".
Prinsip ini dikemukakan oleh Heisenberg, karena adanya sifat dualisme cahaya. "Pengukuran posisi dan momentum partikel secara serentak, selalu menghasilkan ketidakpastian yang lebih besar dari konstanta Planck".

Dx . Dp = h

Dx = ketidakpastian posisi partikel
Dp = ketidakpastian momentum partikel
Contoh:
Tentukan panjang gelombang sinar elektron pada mikroskop elektron !
Jawab:
Elektron bergerak di dalam beda potensial mikroskop elektron, sehingga:
Ek = Elistrik
½ m v² = e Vo ® v = Ö(2 e Vo / m)
Panjang gelombang elektron (partikel) yang bergerak mengikuti rumusan de Broglie, yaitu:
l = h/mv = h/Ö(2 e m Vo)
Jadi panjang gelombang elektron di dalam mikroskop elektron berbanding terbalik dengan akar tegangan (Ö(Vo) yang dipakai..
TEORI DALTON
Atom merupakan partikel terkecil yang tidak dapat dibagi-bagi.

TEORI THOMSON

Berdasarkan penemuan perbandingan e/m (e = muatan elektron; m = massa elektron), Thomson mengemukakan teorinya"
"Atom mempunyai muatan positif yang terbagi merata ke seluruh isi atom, dan dinetralkan oleh elektron yang tersebar di antara muatan listrik positif
® (seperti roti kismis).

TEORI ERNST RUTHERFORD

Rutherford melakukan percobaannya dengan menembakkan partikel a ke arah lempeng emas, sehingga dapat menyimpulkan: Atom terdiri dari inti atom yang bermuatan positif dan dikelilingi oleh elektron yang berputar pada lintasan-lintasan tertentu ® (seperti susunan tata surya).
Bila lintasan elektron dianggap lingkaran, maka energi total elektron:
E = Ek + Ep
E = - k e²/2r
tanda (-) menunjukkan keterikatan terhadap inti
(menunjukkan bahwa untuk mengeluarkan elektron
diperlukan energi).
r = jari-jari orbit elektron
k = 9 x 109 newton.m²/cou
Jadi jika r membesar maka E juga membesar, sehingga elektron pada kulit paling luar memiliki energi terbesar.

Kelemahan teori Rutherford:
  1. elektron dapat "runtuh" ke inti atom karena dipercepat dan memancarkan energi.
  2. spektrum atom hidrogen berupa spektrum kontinu (kenyataannya spektrum garis).

TEORI NEILS BOHR
Berdasarkan model atom Rutherford dan teori kuantum, Neils Bohr mengemukakan teorinya:
  1. Elektron hanya dapat mengelilingi inti atom melalui lintasan-lintasan tertentu saja, tanpa membebaskan energi. Masing-masing lintasan hanya dapat dilalui elektron yang memiliki momentum anguler kelipatan bulat dari h/2p.

    m . v . r = n . h/2
    p
  2. Elektron akan mengalami eksitasi (pindah ke lintasan yang lebih tinggi) atau ionisasi jika menyerap energi, dan transisi ke lintasan yang lebih rendah jika memancarkan energi foton.

    Jari-jari lintasan elektron:

    rn = 5.28 x 10-11 n2 meter

    n = 1, 2, 3, .............. = bilangan kuantum utama

    Tingkat-tingkat energi (energi kulit ke-n):

    En = - (k e2/2 r n2)= (-13.6/n2) ev

    1 eV= 1.6 x 10-19 joule

SPEKTRUM ATOM HIDROGEN (SPEKTRUM GARIS)

Menurut Neils Bohr :

1/l = R [ (1/nA2) - (1/nB2) ]
DE = EB - EA = h . c/l
EB = energi pada kulit n
EA = energi pada kulit nA
R = konstanta Rydberg = 1.097 x 107 m-1
DE = energi yang diserap/dipancarkan pada saat elektron pindah

Gbr. Model Atom Neils Bohr
I.
Deret Lyman
terletak pada daerah ultra ungu
n
A = 1 ; nB = 2, 3, 4, .......

II.
Deret Balmer
terletak pada daerah cahaya tampak
n
A = 2 ; nB = 3, 4, 5. ... ...

III.
Deret Paschen
terletak pada daerah infra merah 1
n
A=3 ; nB = 4, 5, 6,.....

IV.
Deret Bracket
terletak pada daerah infra merah 2
n
A = 4 ; nB = 5, 6, 7,.......

V.
Deret Pfund
terletak pada daerah infra merah 3
n
A = 5 ; nB = 6, 7, 8, ...


Kelemahan Model Atom Bohr:
  1. Tidak dapat menerangkan atom berelektron banyak
  2. Tidak dapat menerangkan pengaruh medan magnet terhadap spektrum atom (kelemahan ini dapat diperbaiki oleh Zeeman, yaitu setiap garis pada spektrum memiliki intensitas dan panjang gelombang yang berbeda)
  3. Tidak dapat menerangkan kejadian ikatan kimia

LUCUTAN GAS

Lucutan gas adalah peristiwa mengalirnya muatan listrik di dalam tabung lucutan gas (tabung Crookes) pada tekanan gas sangat kecil ® menghasilkan berkas sinar katoda
PERBANDINGAN MASSA DAN MUATAN ELEKTRON (e/m)
  1. Dihitung oleh JJ Thomson:
    e/m= 1,7588 x 1011 coul/kg
  2. R.A. Milikan menghitung besarnya muatan elektron:
    e = 1,6021 x 10-19 coulomb
  3. Sehingga massa elektron dapat ditentukan:
    m
    e = 9,1091 x 10-31
Partikel-partikel pembentuk inti atom adalah proton (1P1) dan netron ( 0n1). Kedua partikel pembentuk inti atom ini disebut juga nukleon.
Simbol nuklida : ZXA atau ZAX dengan
A = nomor massa
Z = jumlah proton dalam inti = jumlah elektron di kulit terluar
N = A - Z = jumlah netron di dalam inti atom


Proton bermuatan positif = 1,6 x 10-19 C dan netron tidak bermuatan.
Isoton : Atom-atom unsur tertentu ( Z sama) dengan nomor massa berbeda.
Isoton: kelompok nuklida dengan jumlah netron sama tetapi Z berbeda.
Isobar: kelompok nuklida dengan A sama tetapi Z berbeda.
Massa inti atom selalu lebih kecil dari jumlah massa nukleon-nukleon pembentuknya. Akibatnya ada energi ikat inti.

Contoh: 2p + 2n ® 2He4 jadi Dm = m(2p + 2n) - m(2He4)

Energi ikat inti DE = Dm c2 ® Dm = (Z . mp + N . mn) - minti
Dalam fisika inti satuan massa biasa ditulis 1 sma (1 amu) = 1.66 x 10-27 kg = 931 MeV/C2
satuan Dm :
kg
® E = Dm . c2 (joule)
sma
® E = Dm . 931 (MeV)
Stabilitas inti:
Suatu nuklida dikatakan stabil bila terletak dalam daerah kestabilan pada diagram N - Z.
Untuk nuklida ringan (A < 20) terjadi kestabilan bila Z = N (N/Z = 1), sedangkan untuk nuklida dengan Z > 83 adalah tidak stabil.


Contoh:
1. Sumber energi matahari adalah reaksi inti 4 proton ® helium + 2e+ diketahui:
- massa proton = 1,6726 x 10-27 kg
- massa e+ = 0,0009 x 10-27 kg
- massa helium = 6,6466 x 10-27 kg

Jika dalam reaksi ini terbentuk 6,6466 gram helium, hitunglah energi yang dihasilkannya.
Jawab:
Dalam setiap reaksi yang terjadi: 4 1p1 ® 2He4 + 2e+, selalu terbentuk 1 2He4 yang massanya 6,6466 x 10-27 kg. Karena terbentuknya 6,6466 gram 2He4, maka jumlah reaksi yang terjadi (n) adalah:
n = (6,6466 gram) / (6,6466 x 10-27) = 1024 kali reaksi.
Dari rumus Defek massa:
Dm = M(Dp) - M(1 2He4 + 2e+) = 0,042 x 10-27 kg
Jadi energi total reaksi yang dihasilkan:
E = n . Dm . c2 = 1024 . 0,042 x 10-27 (3.108)2 = 0,378 x 1013 joule

Radioaktivitas adalah peristiwa pemancaran sinar-sinar a, b, g yang menyertai proses peluruhan inti.
Sinar a :
- identik dengan inti atom helium (2He4)
- daya tembusnya kecil tapi daya ionisasinya besar.
Sinar b :
- identik dengan elektron ( le.)
- daya tembus cukup besar tapi daya ionisasinya agak kecil


Sinar g :
- tidak bermuatan (gelombang elektromagnetik).
- daya tembus paling besar tapi daya ionisasinya kecil   (interaksi berupa foto listrik, Compton den produksi   pasangan).

Gbr. Radioaktivitas
Gbr. Kuat Radioaktivitas

Kuat radiasi suatu bahan radioaktif adalah jumlah partikel (a, b, g) yang dipancarkan tiap satuan waktu.
R = l N
R = kuat radiasi satuan Curie
     1 Curie (Ci) = 3,7 x 1010 peluruhan per detik.
l = konstanta pelurahan, tergantung pada jenis isotop dan jenis      pancaran radioaktif, yang menyatakan kecepatan peluruhan inti.
N = jumlah atom.

Waktu paruh (T ½) adalah waktu yang diperlukan oleh ½ unsur radioaktif berubah menjadi unsur lain.

T½ = ln 2/l = 0,693/l                Þ         N = Noe-lt = No(½)-t/T

Jadi setelah waktu simpan t = T½ massa unsur mula-mula tinggal separuhnya, N = ½ No ATAU setelah waktu simpan nT½ Þ zat radioaktif tinggal (½)n
Sinar radioaktif yang melewati suatu materi akan mengalami pelemahan intensitas dengan rumus:

I = Ioe-mx
Io = intensitas mula-mula (joule/s.m2)
m = koefisien serap materi (m-1 atau cm-1)
x = tebal materi/bahan (m atau cm )

Bila I = ½ Io maka x = 0,693/m Þ disebut HVL (lapisan harga paruh) yaitu tebal keping yang menghasilkan setengah intensitas mula

Jenis detektor radioaktif:
  1. Pencacah Geiger(G1M)
    untuk menentukan/mencacah banyaknya radiasi sinar radioaktif
  2. Kamar Kabut Wilson
    untuk mengamati jejak partikel radioaktif
  3. Emulsi Film
    untuk mengamati jejak, jenis dan mengetahui intensitas partikel radioaktif
  4. Pencacah Sintilad
    untuk mencacah dan mengetahui intensitas partikel radioaktif.

TRANSMUSI INTI
  1. Fisi
    Peristiwa pembelahan inti atom dengan partikel penembak, sehingga menghasilkan dua inti baru dengan nomor massa yang hampir sama.

    Contoh: Dalam reaktor atom: U235 + n
    Þ Xe140 + Sr94 + 2n + E
  2. Fusi
    Peristiwa penggabungan dua inti atom ringan, menghasilkan inti atom baru yang lebih berat.

    Contoh: reaksi di matahari: 1H2 + 1H2
    ® 2He3 + on1
PIRANTI EKSPERIMEN FISIKA INTI
  1. Reaktor Atom
    Tempat berlangsungnya reaksi fisi, yaitu penembakan Uranium (U) dengan netron (n), menghasilkan banyak n yang dapat dikendalikan. Bila tidak dikendalikan
    ® terjadi bom atom.

    Komponen reaktor :
    - batang kendali
    - moderator
    - perisai
    - bahan bakar
  2. Siklotron
    Tempat pemercepat partikel (proton atau netron). Energi hingga 100 MeV.
  3. Betatron
    Tempat pemercepat elektron. Energi hingga 300 MeV.
  4. Sinkrotron
    Tempat pemercepat proton. Energi yang dicapai hingga 500 GeV.
  5. Akselerator
    Tempat pemercepat proton atau elektron. Energi hingga 10 GeV.
Semua piranti di atas digunakan untuk melakukan transmutasi inti.
RADIOISOTOP
Radioisotop adalah isiotop dari zat radioaktif, dibuat dengan menggunakan reaksi inti dengan netron.

misalnya 92 U 238 + 0 n 1
® 29 U 239 + g
Penggunaan radioisotop:
- Bidang hidrologi
- biologi
- industri


DIFRAKSI SINAR-X
Jika seberkas sinar-X datang pada kristal, maka sinar-sinar yang dipantulkan akan saling memperkuat (interferensi konstruktif). Dalam hal ini berlaku Persamaan Bragg yaitu :

ml = 2d sin q
m = 1, 2, 3, ........ = orde difraksi
l = panjang gelombang sinar X
d = sudut antara sinar datang dengan permukaan kristal

PITA ENERGI
Teori pita energi dapat menerangkan sifat konduksi listrik suatu bahan.
Pita energi terdiri atas dua jenis yaitu:
  1. Pita valensi (terisi penuh oleh 2N elektron di mana N adalah jumlah atom suatu bahan)
  2. Pita konduksi (terisi sebagian elektron atau kosong)
Di antara pita valensi dan pita konduksi terdapat celah energi yang layak tidak boleh terisi elektron.
Hambatan jenis (kebalikan dari konduktivitas listrik) suatu bahan dapat dikelompokkan menjadi:
  1. Konduktor ( < 10-6 Wm)
  2. Semikonduktor (10-6 Wm - 104 Wm)
  3. Isolator ( > 104 Wm)
Hubungan hambatan jenis (o) terhadap suhu


Pada bahan semikonduktor, hole (kekosongan) den elektron berfungsi sebagai pembawa muatan listrik (pengantar arus).

Semikonduktor intrinsik adalah semikonduktor yang belum disisipkan atom-atom lain (atom pengotor).

Semikonduktor ekstrinsik adalah semikonduktor yang sudah dimasukkan sedikit ketidakmurnian (doping). Akibat doping ini maka hambatan jenis semikonduktor mengalami penurunan. Semikonduktor jenis ini terdiri dari dua macam, yaitu semikonduktor tipe-P (pembawa muatan hole) dan tipe-N (pembawa muatan elektron).

Komponen semikonduktor:
  1. Dioda, dapat berfungsi sebagai penyearah arus, stabilisasi tegangan dan detektor.
  2. Transistor, dapat berfungsi sebagai penguat arus/tegangan dan saklar.Transistor terdiri dari dua jenis yaitu PNP dan NPN.

    Semikonduktor tipe-P
Gbr. Semikonduktor tipe-P


  1. En = tingkat energi akseptor
    Eg = celah energi

    Semikonduktor tipe-N
Gbr. Semikonduktor tipe-N
4.     
En = tingkat energi donor
Eg = celah energi

No comments:

Post a Comment